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Abstract The main objective of the present paper is to
discuss very efficient procedure of the numerical investi-
gation of the propagation of shear band in inelastic solids
generated by impact-loaded adiabatic processes. This pro-
cedure of investigation is based on utilization the finite ele-
ment method and ABAQUS system for regularized thermo-
elasto-viscoplastic constitutive model of damaged material.
A general constitutive model of thermo-elasto-viscoplastic
polycrystalline solids with a finite set of internal state vari-
ables is used. The set of internal state variables is restricted
to only one scalar, namely equivalent inelastic deformation.
The equivalent inelastic deformation can describe the dissi-
pation effects generated by viscoplastic flow phenomena. As
a numerical example we consider dynamic shear band prop-
agation in an asymmetrically impact-loaded prenotched thin
plate. The impact loading is simulated by a velocity boundary
condition, which are the results of dynamic contact problem.
The separation of the projectile from the specimen, resulting
from wave reflections within the projectile and the specimen,
occurs in the phenomenon. A thin shear band region of finite
width which undergoes significant deformation and temper-
ature rise has been determined. Shear band advance, shear
band velocity and the development of the temperature field
as a function of time have been determined. Qualitative com-
parison of numerical results with experimental observation
data has been presented. The numerical results obtained have
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proven the usefulness of the thermo-elasto-viscoplastic the-
ory in the investigation of dynamic shear band propagations.

1 Prologue

In technological processes fracture can occur as a result of
an adiabatic shear band localization generally attributed to a
plastic instability generated by thermal softening and intrin-
sic microdamage mechanisms within a material.

Recent experimental observations have shown that the
shear band procreates in a region of a body deformed where
the resistance to plastic deformation is lower and the pre-
disposition for localized shear band formation is higher. It
has been found experimentally that in dynamic processes the
shear band regions behave differently than adjacent zones.
Within the shear band region the deformation process is char-
acterized by very large strains (shear band strains over 100%)
and very high strain rates (104–106 s−1). The strain rate sen-
sitivity of a material becomes very important feature of the
shear band region.

The main objective of the present paper is to discuss very
efficient procedure of the numerical investigation of the prop-
agation of shear bands in inelastic solids generated by impact-
loaded adiabatic processes, cf. [8,9].

This procedure of investigation is based on utilization the
finite element method and ABAQUS system for regularized
thermo-elasto-viscoplastic constitutive model of damaged
material.

A general constitutive model of thermo-elasto-viscoplastic
polycrystalline solids with a finite set of internal state vari-
ables is used. The set of internal state variables consists of one
scalar, namely equivalent inelastic deformation. The equiva-
lent inelastic deformation can describe the dissipation effects
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generated by viscoplastic flow phenomena. The relaxation
time is used as a regularization parameter.

The identification procedure for the material functions and
constants involved in the constitutive equations is developed
basing on the experimental observations of adiabatic shear
bands in a HY-100 steel presented by Cho et al. [2].

As a numerical example let us consider dynamic shear
band propagation in an asymmetrically impact-loaded pre-
notched thin plate. The plate is made of a HY-100 steel. A
notch (260 µm wide) is further extended by 2 mm and is sit-
uated symmetrically on the edge. The specimen is supported
at four points and is initially stationary. The constant velocity
V0 = 38 m/s is imposed for projectile. The projectile comes
into contact with the specimen over the width of 50 mm. The
results of shear band advance and the changes of its velocity
in time are presented in Figs. 1 and 2, respectively.

The impact loading is simulated by a velocity boundary
condition which are the results of dynamic contact prob-
lem. The velocity imposed in specimen in front of projectile
increases during the process. The separation of the projectile
from the specimen, resulting from wave reflections within the

Fig. 1 Shear band advance as a function of time. (After [10])

Fig. 2 Shear band velocity as a function of time. (After [10])

projectile and the specimen, occurs in the phenomenon. All
surface areas have traction free boundary conditions except
where the velocity boundary condition is applied. We ideal-
ize the initial boundary value problem observed experimen-
tally in Guduru et al. [10], by assuming the velocity boundary
condition and different material of the specimen. The discret-
ization parameters are assumed in such a way, to solve the
problem of mesomechanics properly. The dimension of the
accepted mesh is of the order 20µm. A thin shear band region
of finite width which undergoes significant deformation and
temperature rise has been determined. Shear band advance,
shear band velocity and the development of the temperature
field as a function of time have been determined. Qualitative
comparison of numerical results with experimental observa-
tion data has been presented. The numerical results obtained
have proven the usefulness of the thermo-elasto-viscoplastic
theory in the numerical investigation of dynamic shear band
propagation.

2 Physical and experimental motivation

2.1 Analysis of mesomechanical problems

In modern technology we observe recently very important
application of metals, ceramics and polymers at mesoscale.
Micromachines are in this size range clearly will be of
increasing technological significance. Processes that control
the mechanical integrity of microelectronic devices take also
place on this size scale, cf. Needleman [14] and Hutchinson
[11].

It is considerable experimental evidence that plastic flow
and particularly localization of plastic deformation and frac-
ture phenomena in crystalline solids are inherently size
dependent over mesoscale range. It is generally accepted that:
“smaller is stronger” or “smaller is harder”.

Plastic behaviour at mesoscale range can not be character-
ized by conventional plasticity theories because they incor-
porate no material length scale and predict no size effect.

In recent years a variety of theoretical frameworks is
emerging to describe inelastic deformation at the mesoscale.
Four such frameworks (constitutive structures), each involv-
ing a length scale, are as follows: (1) discrete dislocation
plasticity; (2) non-local plasticity; (3) the coupling of matter
diffusion and deformation; (4) elasto-viscoplasticity.

The mesomechanical problems pose also numerical chal-
lenges. Computations on smaller size scale require smaller
time steps. Since size dependent phenomena come into play
when there are gradients of deformation and stress, hence
numerical methods are usually needed to obtain solutions.
Finite strains and rotations have to be taken into
consideration.
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At the mesoscale problems the dominant numerical
methods are the finite element and finite difference methods.

It is noteworthy to add that the mesoscale continuum
mechanics is in an early stage of development, both in terms
of the theoretical framework as well as the computational
methods.

In our consideration we shall use the thermo-elasto-
viscoplasticity as a constitutive model of the material and
apply the finite element method in numerical computations.

2.2 Experimental investigation of the initiation and
propagation of shear bands

Guduru et al. [10] presented an experimental investigation
of the initiation and propagation characteristics of dynamic
shear band in C300 maraging steel. An elastic discharge
machining (EDM) notch (260µm wide) was further extended
by 2 mm by fatigue loading.

In experimental investigation of Guduru et al. [10], two
diagnostic techniques were used to observe the crack tip, the
propagating shear band and the temperature field evolution
during the initiation and propagation of the shear band. On
one side of the specimen, the optical technique of coherent
gradient sensing (CGS) in reflection was used to monitor the
evolution of the stress intensity factors as a function of time.
On the other side of specimen, a newly developed full-field,
high-speed infrared (IR) imaging system was employed to
measure the evolution, 2D-temperature field. They measure
the advance of the shear band and its velocity in five different
experiments, cf. Figs. 1 and 2. The shear band velocity can
be seen to be highly transient and a function of the impact
speed. In all but one experiment, the band arrests momen-
tarily at about 30 µs, before accelerating to high speeds.
The maximum shear band velocity observed here is about
1,100 m/s, cf. also Zhra et al. [23,24].

2.3 Fracture phenomena along localized shear bands

Fractured specimens were examined using an optical micro-
scope to study the features of the shear bands such as its
width, trajectory, the fracture surface, etc. The shear band is
revealed as a white stripe. The thickness of the band is about
40 µm. A scanning electron microscope (SEM) image of
the specimen surface that failed by shear band propagation,
shows elongated voids, with sheared edges that are charac-
teristic of such a failure mode. The presence of voids reveals
the development of triaxiality tensile stress state that led to
void growth and eventual fracture.

2.4 Temperature measurement

Guduru et al. [10] performed also broad experimental obser-
vations of the temperature field evolution during the initiation
and propagation of the shear band. One of their objectives of
imaging the temperature field was to visualize the develop-
ment of the plastic zone at the tip of the initial crack and
to observe its evolution, through further localization, into
a shear band. The IR camera was focussed at the tip of the
fatigue crack as illustrated on the left-hand side of Fig. 3. The
impact speed was 35 m/s. They show a sequence of thermal
images revelling the development of the temperature field as
a function of time. Starting at about 21 µs, the central hot
region extends to the right, as indicated by the contour lines,
signifying the process of shear localization. The measured
highest temperature rise within the plastic zone when this
happened was at least 80 K, cf. Fig. 3.

Let us now focus our attention on the temperature field
associated with the tip of a propagating shear band. The
gradual nature of temperature rise at the front end of shear
band supports the notion of a very diffuse shear band tip, as

Fig. 3 A sequence of thermal
images showing the transition of
crack tip plastic zone into a
shear band. (After [10])
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opposed to a crack tip which carries a strong singularity in
the field quantities.

As the shear band propagates, the material within the
band progressively accumulates large plastic shear strains
within short times and the temperature can quickly reach very
high value. Of special interest in the investigation of Guduru
et al. [10] has been the temperature distribution along a well-
defined shear band. They have been consistently observed, in
all experiments where a propagating shear band was imaged,
that the temperature distribution along the band is highly non-
uniform, with discrete regions of high temperature, that look
like “hot spots”. These hot spots are also seen to translate
along the length of the band.

3 Formulation of the evolution problem

3.1 Thermodynamic theory of elasto-viscoplasticity

We shall use a constitutive model of elasto-viscoplastic
polycrystalline solids developed within the thermodynamic
framework of the rate type covariance structure with a finite
set of the internal state variables (cf. [3–6,15–22]).

It is postulated that the internal state vector µ has the form

µ = (∈p), where ∈p= ∫ t
0

( 2
3 dp : dp

) 1
2 defines the equiva-

lent deformation and describes the dissipation effects gener-
ated by viscoplastic phenomena. The rate type constitutive
equations for Kirchhoff stress tensor τ and temperature ϑ
have the form as follows
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f = f (J2, ϑ,µ), κ = κ̂(∈p, ϑ).

We interpret Le as the elastic matrix, Lth as the thermal
expansion matrix, ψ is the free energy function, F denotes
the deformation gradient, e is the total strain in the current
configuration, ϑ denotes temperature, f is the plastic poten-
tial function, J2 denotes the second invariant of the Kirchhoff
stress tensor τ , Tm denotes the relaxation time for mechani-
cal disturbances, κ is the isotropic work-hardening-softening

function, cp = −ϑ ∂2ψ̂

∂ϑ2 defines the specific heat, q denotes
the heat flow vector field, d = de+dp is the total deformation

rate tensor, g denotes the metric tensor in the current config-
uration, � is the empirical overstress viscoplastic function,
ρRef and ρ denote the mass density in the reference and cur-
rent configuration respectively, and χ∗ is the irreversibility
coefficient.

3.2 Initial-boundary value problem (evolution problem)

Find ϕ as function of t and x satisfying

(i) ϕ̇ = A(t,ϕ)ϕ + f(t,ϕ);
(ii) ϕ(0) = ϕ0(x);
(iii) The boundary conditions;

⎫
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where the unknown ϕ takes values in a Banach space, A(t,ϕ)
is a spatial linear differential operator (in general unbounded)
depending on t and ϕ, f is a nonlinear function, and the dot
denotes the material derivative.
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(5)

denotes the thermo–elastodynamic matrix for adiabatic pro-
cess and υ is the spatial velocity.

3.3 Numerical solution of the evolution problem

The discretization in space and time based on the finite
element method is developed. Rate dependency (viscosity)
allows the spatial differential operator in the governing equa-
tions to retain hyperbolic and the initial value problem (the
Cauchy problem) is well-posed. Viscosity introduces implic-
itly a length-scale parameter into the dynamical initial-
boundary value problem.
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The viscoplastic regularization procedure assures the sta-
ble integration algorithm by using the finite element method.
Particular attention is focused on the well-posedness of the
evolution problem (the initial-boundary value problem) as
well as on its numerical solutions. The Lax–Richtmyer equiv-
alence theorem is formulated and conditions under which this
theory is valid are examined.

We take advantage of the Lax–Richtmyer equivalence the-
orem which says that if the evolution problem (3) is well
posed for t ∈ [0, t0] and if it is approximated by the finite
element scheme, which is consistent then the scheme is con-
vergent to the strict solution of the evolution problem (3) if
and only if it is stable.

In explicit finite element scheme for a set of the partial
differential equations (3)(i) of the hyperbolic type the condi-
tion of stability is the criterion of Courant–Friedrichs–Lewy,
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∣
∣cn

p,q,r

∣
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⎞
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p = 1, 2, 3, . . . , P q = 1, 2, 3, . . . , Q;
r = 1, 2, 3, . . . , R,

where �tn,n+1 denotes time step, cn
p,q,r denotes the veloc-

ity of the propagation of the disturbances in the vicinity of
the central node (p, q, r), �Ln

p,q,r is the minimum distance
between the mesh nodes which are in the vicinity of the node.

The Courant–Friedrichs–Lewy condition requires that the
numerical domain of dependence of a finite-element scheme
include the domain of dependence of the associated partial
differential equations.

4 Identification procedure

4.1 Assumption of the material functions for an adiabatic
process

Let us assume the plastic potential function for a material in
the form

f = J2, where J2 = 1

2
τ

′abτ
′cd gacgbd . (7)

The isotropic hardening-softening material function κ is
postulated in the form as follows
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where κ0 and κ1 denote the yield and saturation stress of
the matrix material, respectively, h = h(ϑ) is the tempera-
ture dependent strain hardening function and b is a material
coefficient.

The overstress function � is assumed in the form
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(9)

4.2 Determination of the material constants

To determine the material constants assumed we take advan-
tage of the experimental observations of adiabatic shear bands
in a HY-100 steel presented by Cho et al. [2]. In this exper-
iment the specimens used were machined in the shape of
thin-walled tubes with integral hexagonal flanges for grip-
ping. Torsional loading at high strain rates was applied in a
torsional Kolsky bar (split-Hopkinson bar). Kolsky bar pro-
vides a relatively simple and uniform state of shear stress
during dynamic deformation, because the instrumentation
affords an easy means of measuring average strain as a func-
tion of time, and because supplementary instrumentation can
be added easily to measure local strain and the temperature
distribution.

From the observations we have the results as follows

(i) The room temperature dynamic shear stress–strain
curve, as obtained with the torsional Kolsky bar.

(ii) The corresponding nominal strain rate was assumed
constant and was about 1,200 s−1.

(iii) The maximum shear strain at fracture in dynamic
deformation is about 1,000%.

(iv) Shear bands were examined using optical micros-
copy, Fig. 5, polarized light microscopy, and SEM.
Shear band area is white after etching and its edges
are relatively well-defined with different surface fea-
tures apparent within the shear band area and the
matrix material. The average width of the shear band
is approximately 20 µm, the maximum local shear
strain is about 1,000%, and the maximum tempera-
ture is about 590◦C.

(v) The formation of a shear band during the test of a HY–
100 steel specimen has been investigated by a high
speed image converter camera and is clearly shown
in Figs. 6 and 7.

(vi) The average velocity of the propagation shear band is
estimated to be around 250/500 m s−1.

Let us consider the adiabatic dynamic process for a thin-
walled steel tube twisted at nominal rate 1,000 s−1. In fact we
idealize the initial-boundary value problem investigated by
Chi et al. [1] and Cho et al. [2]. We take here advantage of our
previous numerical investigation presented by Lodygowski
and Perzyna [13].

We assume an elasto-visco-perfectly plastic material and
a specimen in the shape of thin-walled tube, cf. Fig. 8. The
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Fig. 4 Details of the
thin-walled specimen with a
blow–up of the fine grid
deposited photographically on
the outside surface of the
specimen. The dimension are in
milimeters (After [2])

Fig. 5 Optical micrograph of a
shear band formed in HY-100
steel, after polishing and etching
(After [2])

bottom surface of the model is fixed to constrain the all
possible displacements. The depth of thin wall tube (Figs. 8
and 9) is equal to 0.00125 m, which is half of measurement
specimen length, cf. Fig 4 (for details see [7]). The top sur-
face is the plane of symmetry of Split-Hopkinson Bar (SHB).
At the surface the multipoint constraints (MPC) are intro-
duced. To reflect the longitudinal stiffness and the mass of
the specimen and SHB the single spring and concentrated
mass is fixed to MPC. At the reference point of MPC the

torsional loading is applied. It has been postulated that the
specimen is twisted with ω∗ = 253 s−1 and the duration
of the process is 100 µs. The following values for vari-
ous material parameters are assumed (HY-100 steel): den-
sity ρ = 7,830 kg/m3, Young modulus E = 208 GPa, the
specific heat cp = 460 J kg−1K−1, the irreversible coeffi-
cient χ∗ = 0.9, the relaxation time Tm = 2 × 10−1 µs,
m = 1, the yield stress κ0 = 598 MPa for temperature 20◦C,
κ0 = 540 MPa for temperature 100◦C, κ0 = 483 MPa for
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Fig. 6 Photographs of the grid pattern during the formation of a shear
band in HY-100 steel taken by a high speed image converter camera.
The time interval between frames is 40 µs (After [2])

Fig. 7 The stress-strain behaviour of HY-100 steel. The number arrows
indicate nominal strain values at which the photographs shown in Fig. 11
are taken. The corresponding values of the maximum local strain are
shown by the dotted line (After [2])

Fig. 8 Assumed model of the tube specimen for twisting

temperature 200◦C, κ0 = 426 MPa for temperature 300◦C.
An imperfection in the form of weaker material (Young mod-
ulus E = 115 GPa) has been introduced at one place near
model top surface to initiate the shear band.

The shear band resulting from numerical simulation can
propagate on the cylinder surface in different form, see Glema

Fig. 9 Shear band propagation in the model of thin wall specimen
under twisting

et al. [8,9]. It depends on longitudinal boundary and initial
conditions used in the models. Here, it has been considered
the solution in the ring form, cf. Fig. 9, when the shear band
propagates in the plane orthogonal to longitudinal SHB axis.
Detailed description of shear band propagation around the
tube is presented in Glema et al. [8,9].

The shear band advance and the propagation velocity of
the shear band as a function of time are shown in Fig. 10 (at
the tip of shear band it has been assumed ∈p= 0.25). The
average width of the shear band is obtained as 80/100 µm.

5 Numerical examples

5.1 Propagation of shear bands

In initial boundary value problem we idealize the process
observed experimentally in Guduru et al. [10] and Li et al.
[12] by assuming the velocity boundary condition and we
define different material of the specimen (HY-100 steel).

A plane specimen of length 254 mm and width 95 mm
has the initial notch at the center of the left edge. The thick-
ness of the specimen is 12 mm. The notch length is 27.4 mm
and the initial crack 2 mm long is present in the horizontal
direction (see Fig. 11). The dimensions of the plate, notch
and the initial crack are taken from experimental data. The
supports and impact projectile position are also presented in
Fig. 11. The projectile impacts the specimen with velocity
equal to 38 m s−1. There are two different positions of pro-
jectile giving the unsymmetric impact and symmetric one,
when central impact is considered (dashed line in Fig. 11).
For both positions of projectile the boundary conditions sat-
isfy the symmetry by taking the same distance for upper and
lower edge, but not the same at left (prenotched) and right
side of the specimen.

The FE discretization is defined in such the way that finite
element dimensions are of 20 µm in the region of interest.
The whole model consists of 49,500 plain stress finite ele-
ments, 49,750 nodes, 99,500 degree of freedom.
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Fig. 10 Shear band velocity
and shear band length as
functions of time for twisting of
tube

Fig. 11 Specimen geometry for impact of the plate

The contour plots of equivalent plastic strain and temper-
ature obtained for time instants 40, 50, 60 µm are visualized
in Fig. 12 for unsymmetric impact. Similar results for central
impact are shown in Fig. 13.

To show better that we obtained non-uniform temperature
distribution along the shear band for both considered cases
we present the magnification of the results for the field of
temperature at 60 µs for unsymmetric and central impacts,
respectively, cf. Figs. 14 and 15. The contour value of 25%

for plastic equivalent strain is taken to observe the shear band
initiation and propagation. Putting down the coordinates of
position of shear band advance and controlling the deforma-
tion during the process the functions of shear band length and
propagation velocity of its front are calculated. That results
are displayed in Fig. 16.

5.2 Discussion of the numerical results

The results of numerical simulation of shear band allow to
observe the dynamic process of advance of shear band tip
in material specimen under impact loading. The calculated
values of equivalent inelastic deformation make possible to
estimate shear band length advance and the velocity of shear
band propagation. The period of time 40 µs is common
for computed examples to report the shear band propaga-
tion, from its initiation to considered advance. Within the
same time period formation of shear band is also observed
in experimental measurement. The advances of shear band
length in experiments and in computations have similar final
values and functions presenting its evolution are compara-
ble. The comparison of the shear band propagation veloc-
ity reaches the same conclusion. The calculated values of
200−500 m s−1 for tube twisting and from 100 m s−1 up to
value of 900 m s−1 for pre-notched plate example are of the
range the experimental results. Rather the qualitative agree-
ment of experimental simulation results is verified, than strict
comparison of values.

The functions of the simulated shear band propagation
velocity for pre-notched plate, like the functions obtained
from laboratory test, show quite variant, but increase of its
value at the beginning of shear band advance, later the sudden
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Fig. 12 Evolution of plastic equivalent deformation and temperature along the shear band for unsymmetric impact (for 40, 50, 60 µs)

Fig. 13 Evolution of plastic equivalent deformation and temperature along the shear band for central impact (for 40, 50, 60 µs)

Fig. 14 Magnification of the
results for the field of
temperature at 60 µs for
unsymmetric impact

Fig. 15 Magnification of the
results for the field of
temperature at 60 µs for central
impact

drop of its value after reaching the maximum and one more
increasing path at the end of time period. The common sud-
den velocity drop, observed in experiments and simulations,
is specially worth to point it out. The calculation of veloc-
ity values using results from simulation is generally sensi-
tive to the exactness of shear band tip evidence. Relatively
small length of the shear band, together with the fact that

material and boundary conditions do not correspond directly
accent the qualitative agrement of results. The remark con-
cerning the temperature results goes in the same direction.
There is valuable to expose that numerical results show the
particular character of experimental ones, with occurrence
of discrete regions of high temperature, that are described
as "hot spots". At the beginning of shear band advance the
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Fig. 16 Propagation velocity of
shear band front and shear band
length as functions of time, for
unsymmetric and central
impacts

temperature uniformly decreases around the crack tip, but
next the temperature field changes the distribution and there
is no more rule that temperature continuously is lower when
the distance from maximum is greater. Appearance of sev-
eral local extremes take place after the mentioned above
drop of propagation velocity. The evolution of described vari-
ables suggests the step-wise nature of shear band propagation
phenomena.

6 Epilogue

The elaborated numerical algorithm satisfies the material
objectivity principle with respect to diffeomorphism (any

motion). The discretization parameters are assumed in such
a way that the problem of mesomechanics is solved prop-
erly. A thin shear band region of finite width which under-
goes significant deformation and temperature rise has been
determined. Its evolution until occurrence of final fracture
has been simulated. Shear band advance, shear band veloc-
ity and the development of the temperature field as a func-
tion of time have been determined. Qualitative comparison
of numerical results with experimental observation data has
been presented. The numerical results obtained have been
proven the usefulness of the thermo-elasto-viscoplastic the-
ory in the numerical investigation of dynamic shear band
propagation.
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