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Abstract

The main objective of this paper is the investigation of the interaction and re¯ection of elastic±viscoplastic waves which can lead to

localization phenomena in solids. The rate type constitutive structure for an elastic±viscoplastic material with thermomechanical

coupling is developed. An adiabatic inelastic ¯ow process is considered. The Cauchy problem is investigated and the conditions for

well-posedness are examined. Discussion of fundamental features of rate-dependent plastic medium is presented. This medium has

dissipative and dispersive properties. Mathematical analysis of the evolution problem (the dynamical initial-boundary value problem)

is presented. The dispersion property implies that in the viscoplastic medium any initial disturbance can break up into a system of

group of oscillations or wavelets. On the other hand, the dissipation property causes the amplitude of a harmonic wavetrain to decay

with time. In the evolution problem considered in such dissipative and dispersive medium, the stress and deformation due to wave

re¯ections and interactions are not uniformly distributed, and this kind of heterogeneity can lead to strain localization in the absence of

geometrical or material imperfections.

Since the rate-independent plastic response is obtained as the limit case, when the relaxation time Tm tends to zero, the theory of

viscoplasticity o�ers the regularization procedure for the numerical solution of the dynamical initial-boundary value problems with

localization of plastic deformation.

Numerical examples are presented for a steel bar axisymmetric specimen subjected to tension, with the controlled displacements

imposed at one or two opposite sides with di�erent velocities. Two cases of the initial-boundary conditions are considered;

(A) symmetric (double side) tension of the specimen which results in symmetric pattern of deformations; (B) asymmetric (single side)

tension of the specimen with the opposite side ®xed, which leads to non-symmetric deformation.

For both cases of boundary conditions a set of examples is computed with di�erent initial velocities changing between 0.5 and 20 m/

s. The ®nal states are de®ned by prescribed value of the total elongation of a specimen. In the numerical examples the attention is

focused on the investigation of the interactions and re¯ections of waves and on the location of localization of plastic deformation. The

distribution of plastic equivalent strain, temperature and vector plots of velocities represents the results. The computations are per-

formed using the industrial ®nite element program ABAQUS (explicit method). Ó 2000 Elsevier Science S.A. All rights reserved.

1. Introduction

The correspondence between stationary body waves and bulk localization has long been appreciated
(cf. [9,49,10,51,18,40]). In many recently published papers the investigation of adiabatic shear band lo-
calization phenomena has been based on an analysis of acceleration waves and has taken advantage of a
notion of the instantaneous adiabatic acoustic tensor (cf. [3±5,26,31,40,50]). Connection between stationary
waves, stability and well-posedness of initial-boundary value problems has received considerable attention
(cf. Simpson and Spector (1987), [43,2,25]). The analysis of the in¯uence of the e�ect of boundaries and
interfaces on shear band localization in time- and rate-independent plastic materials has been based on the
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investigation of stationary body, Rayleigh and Stoneley waves (cf. [22,47]). They de®ned stability, in the
sense of limits to the uniqueness of solutions to quasi-static boundary value problems and addressed sta-
bility in terms of the existence of certain stationary waves.

Very recently, it has been widely recognized to consider an elastic±viscoplastic model of a material as a
regularization method for solving mesh-dependent strain softening problems of plasticity (cf. [6,7,14±
17,20,21,23,24,31±35,37,44,45,52,53]).

In these regularized initial-boundary value problems, wave propagation phenomena play a fundamental
role. Since an elastic±viscoplastic model introduces dissipative as well as dispersive nature for the propa-
gated waves, the analysis of dispersive, dissipative waves and particularly their interactions and re¯ections
have to be considered as the most important problem. The main objective of the present paper is the in-
vestigation of the interaction and re¯ection of elastic±viscoplastic waves which can lead to localization of
plastic deformation in solids.

In Section 2 the rate type constitutive structure for an elastic±viscoplastic material with thermome-
chanical coupling is developed. Section 3 is devoted to the formulation and investigation of an adiabatic
inelastic ¯ow process. The Cauchy problem is investigated and the conditions which guarantee its well-
posedness are examined.

In Section 4 the dispersive analysis of the evolution problem is presented. First, the linear case of the
evolution problem is considered. A particular wave solution by the simple harmonic wavetrains is
investigated. The dispersion relation, the phase and group velocities are determined and main dispersive
properties are discussed. Second, the discussion of fundamental features of rate-dependent medium is
presented. Numerical solutions of the initial-boundary value problem (evolution problem) are discussed
in Section 5. Mathematical formulation of the evolution problem is presented. Discretization in
space and time is proposed and convergence, consistency and stability are examined. The Lax±Rich-
tmayer equivalence theorem is formulated and conditions under which this theorem is valid are
investigated.

In Section 6 numerical examples are presented for a steel bar axisymmetric specimen subjected to ten-
sion, with the controlled displacements imposed at one or two opposite sides with di�erent velocities. Two
cases of the initial-boundary conditions are considered; (A) symmetric (double side) tension of the specimen
which results in symmetric pattern of deformations; (B) asymmetric (single side) tension of the specimen
with the opposite side ®xed, which leads to non-symmetric deformation. For both cases of boundary
conditions a set of examples is computed with di�erent initial velocities changing between 0.5 and 20 m/s.
The ®nal states are de®ned by the prescribed value of the total elongation of a specimen.

Numerical examples clearly show that the localization of plastic deformation is generated by the in-
teractions and re¯ections of dispersive, dissipative waves.

In Section 7 main ®nal comments are presented.

2. Constitutive structure for thermoviscoplasticity

The main objective is to develop the rate type constitutive structure for an elastic±viscoplastic material in
which the e�ects of thermomechanical couplings are taken into consideration.

Let us introduce the axioms as follows:
(i) Axiom of the existence of the free energy function in the form

w � ŵ�e;F; #; l�; �1�
where e is the Eulerian strain tensor, F the deformation gradient, # a temperature ®eld and l denotes the
internal state variable vector.
(ii) Axiom of objectivity (spatial covariance). The constitutive structure should be invariant with respect
to any diffeomorphism n : S!S, where S denotes the actual (spatial) con®guration of a body B,
cf. [19].
(iii) The axiom of entropy production. For any regular process /t, #t, lt of a body B the constitutive func-
tions are assumed to satisfy the reduced dissipation inequality
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1

qRef

s : dÿ �g _#� _w� ÿ 1

q#
q � grad #P 0; �2�

where q and qRef denote the mass density in the actual and reference con®guration, respectively, s the
Kirchho� stress tensor, d � de � dp the rate of total deformation, g denotes the speci®c (per unit mass)
entropy and q is the heat vector ®eld.

Let us postulate l �2p, where 2p�R t
0

2
3
dp : dp

ÿ �1=2
dt is the equivalent plastic deformation. It is introduced

as the internal state variable to describe the dissipation e�ects generated by viscoplastic ¯ow phenomena.
Let us assume the plastic potential function for a material in the form

f � J2; where J2 � 1

2
s
0abs

0cdgacgbd ; �3�

and g denotes the metric tensor in S.
Let us postulate the evolution equation as follows:

dp � KP; �4�
where for the elastic±viscoplastic model of a material we assume (cf. [27,28,31±33])

K � 1

Tm

U
f
j

��
ÿ 1

��
: �5�

Tm denotes the relaxation time for mechanical disturbances and j is the isotropic work-hardening pa-
rameter, U the empirical overstress function and the bracket h�i de®nes the ramp function,
P � �1=2

����
J2

p ��of =os�. Thus, we have

Pab � 1

2
����
J2

p s
0cdgcagdb: �6�

The isotropic hardening±softening material function j is assumed in the form as follows:

j � j2
0 qf � �1ÿ q� exp � ÿ h�#� 2p �g2�1ÿ b#�; �7�

where q � j1=j0, j0 and j1 denote the yield and saturation stress of the matrix material, respectively,
h � h�#� is the temperature-dependent strain hardening function for the matrix material and b is a material
coef®cient. The overstress viscoplastic function U is postulated in the form (cf. [27±30])

U
f
j

�
ÿ 1

�
� f

j

�
ÿ 1

�m

; where m � 1; 3; 5; . . . �8�

The axioms (i)±(iii) and the evolution equations (4) lead to the rate equations as follows:

Lvs �Le : dÿLth _#ÿ �Le� � gs� sg� : P� 1

Tm
U

f
j

��
ÿ 1

�m�
;

_# � ÿ 1

qcp
div q� #

cpqRef

os

o#
: d� v

qcp
s : dp;

�9�

where Lv de®nes the Lie derivative with respect to the velocity ®eld, dot denotes the material derivative and
q is the actual density,

Le � qRef

o2ŵ
oe2

; Lth � ÿqRef

o2ŵ
oeo#

; cp � ÿ# o2ŵ
o#2

; �10�

v is the irreversibility coe�cient.
To make possible numerical investigation of the three-dimensional dynamic adiabatic deformations of a

body for di�erent ranges of strain rate we introduce some simpli®cations of the constitutive model. The
in®nitesimal linear theory of elasticity is postulated with G and K as the shear and bulk modulus,
respectively.
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3. Adiabatic inelastic ¯ow process

3.1. Formulation of an adiabatic inelastic ¯ow process

Let us de®ne an adiabatic inelastic ¯ow process as follows (cf. [31±33]). Find /, v, q, s and # as functions
of t and x such that

(i) the ®eld equations

_u �A�t; x;u�u� f�t;x;u�; �11�
where

u �

/

v

q

s

#

2666666664

3777777775
; f �

v

0

0

ÿ Lth v
qcp

s�Le � gs� sg
� �

: P
h i

1
Tm
hU�fj ÿ 1�i

v
qcp

s : P 1
Tm
hU�fj ÿ 1�i

26666666664

37777777775
;

A �

0 0 0 0 0

0 0 s
qRef q

grad 1
qRef

div 0

0 ÿqdiv 0 0 0

0 Le : sym o
ox
� 2 sym s : o

ox

ÿ �
0 0 0

0 0 0 0 0

2666666664

3777777775
;

�12�

(ii) the boundary conditions
(a) displacement / is prescribed on a part o/ of o/�B� and tractions �s � n�a are prescribed on part os

of o/�B�, where o/ \ os � 0 and o/ [ os � o/�B�;
(b) heat ¯ux q � n � 0 is prescribed on o/�B�;

(iii) the initial conditions /, v, q, s and # are given at each particle X 2 B at t � 0;
are satis®ed.

In Eq. (12) ov=ox de®nes the spatial velocity gradient and qRef denotes density in the reference con-
®guration.

3.2. The Cauchy problem

Let us consider the Cauchy problem

_u �A�t;u�u� f�t;u�; t 2 �0; tf �; u�0� � u0; �13�
where A is a spatial di�erential operator and f is a non-linear function, both de®ned by (12), (cf. [31±33]).

In order to examine the existence, uniqueness and well-posedness of the Cauchy problem (13) let us
assume that the spatial di�erential operator A has domain D�A� and range R�A�, both contained in a real
Banach space E and the non-linear function f is as follows f : E ! E. To investigate the existence as well as
the stability of solutions to (13) it is necessary to characterize their properties without actually constructing
the solutions. This can be done by considering the properties of a non-linear semi-group because if the
operator A� f��� generates a non-linear semi-group fF�t ; t P 0g, then a solution to (13) starting at t � 0
from any element u0 2 D�A� is given by

u�t; x� � F�t u
0�x� for t 2 �0; tf �: �14�

We say the problem (13) is well posed if F�t is continuous (in the topology on D�A� and R�A� assumed)
for each t 2 �0; tf �.
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Let us postulate as follows:
(i) the strong ellipticity condition in the form:

E �Le ÿ 1

cpqRef

#Lth os

o#
�15�

is strongly elliptic (at a particular deformation /) if there is an � > 0 such that

Eabcdfafcnbnd P �kfk2 knk2 �16�
for all vectors f and n 2 R3;
(ii) for positive numbers k1

f and k2
f and for Tm > 0

f�t;u� 2 E; kf�t;u�kE6 k1
f ; kf�t;u0� ÿ f�t;u�kE6 k2

f ku0 ÿ ukE �17�
and

t! f�t;u� 2 E is continuous: �18�
Using the results presented by Hughes et al. [11] and Marsden and Hughes [19] it is possible to show
(cf. [31±33]) that the conditions (i) and (ii) guarantee the existence of (locally de®ned) evolution operators
F�t : E! E that are continuous in all variables. In other words the solution of the Cauchy problem (13) in
the form (14) exists, is unique and well-posed.

4. Mathematical analysis of the evolution problem

4.1. Dispersive analysis

As a matter of fact, the dispersion of a waveform is caused by certain physical and/or geometrical
characteristics of the medium in which the wave is generated. Consequently, instead of dispersive waves, it
is perhaps more precise to speak of a dispersive medium or, where geometrical features alone cause the
dispersion, a dispersive geometry, cf. [48].

The relaxation time Tm (or viscosity) can be viewed either as a regularization parameter or as a mi-
crostructural parameter to be determined from experimental observations.

To make our analysis easier let us consider the linear, dispersive, non-dissipative system of equa-
tions

_u �AH
0 �t; x�u� f H

0 �t; x�u: �19�
The theory of dispersive wave propagation can be introduced by a particular wave solution of Eq. (19),
namely, by the simple harmonic wavetrains (cf. [54,55,48])

u � A exp�i�k � xÿ xt��; �20�
where k is the wave number, x the frequency, and A denotes the amplitude.

Since a set of equations (19) is linear, A factors out and can be arbitrary. To satisfy a set of equations
(19), k and x have to be related by an equation

G�x; k; x; t� � 0; �21�
which is called the dispersion relation.

Let us assume that the dispersion relation may be solved in the form of real roots

x � W �k; x; t�: �22�
There will be a number of such solutions, in general, with di�erent functions W �k; x; t�. We refer to these as
di�erent modes.

The phase velocity c is given as a function of wavenumber

c�k; x; t� � x
k

k̂ � kÿ1W �k; x; t�k̂; �23�
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where k̂ is the unit vector in the k direction. For any particular mode x � W �k; x; t�, the phase velocity c is a
function of k.

Another velocity associated with the harmonic wavetrains (20) in dispersive media is the group velocity
C de®ned as

C�k; x; t� � oW �k; x; t�
ok

; �24�

which also depends on the wavenumber k.
The derivative of C with respect to k is the symmetric dispersive tensor

Wkk � o2W

ok2
: �25�

To have dispersive waves we have to introduce two assertions:

�i� W �k; x; t� is real; �26�

�ii� det
o2W
okiokj

���� ���� 6� 0:

The second condition of (26) ensures that the group velocity C is not a constant.
The quantity

h � k � xÿ xt �27�
in the solution (20) is the phase.

The group velocity is actually the most important velocity associated with dispersive waves, as it not only
is the velocity of a given group of oscillations or `wavelets' in a wavetrain but also coincides with the
velocity with which the energy in that group propagates. Moreover, in a dispersive medium any initial
disturbance is eventually broken up into a system of such groups.

Since the medium under consideration also has dissipation property (cf. Eq. (9)2 in which the last term
on the right-hand side is responsible for dissipation e�ect) hence mathematically, loses due to dissipation
are manifested by the dispersion relation yielding complex or pure imaginary values of W corresponding to
real values of k. The amplitude of a harmonic wavetrain then decays exponentially with time.

If the dissipation becomes appreciable, as is in the elastic±viscoplastic medium, then the general theory
of waves in dispersive media would require modi®cation. 1

The previous consideration does not apply to the general non-linear case (cf. Eq. (11)). To obtain some
results we can use the variational method, the perturbation theory or the numerical ®nite element proce-
dure.

4.2. Fundamental features of the rate-dependent plastic model

It has been proved that the localization of plastic deformation phenomenon in an elastic-viscoplastic
solid body can arise only as the result of the re¯ection and interaction of waves. It has a di�erent character
than that which occurs in a rate-independent elasto-plastic solid body (cf. [31±33]). Rate dependency
(viscosity) allows the spatial di�erence operator in the governing equations to retain its ellipticity and the
initial value problem is well-posed. Viscosity introduces implicitly a length-scale parameter into the dy-
namical initial-boundary value problem and hence it implies that the localization region is di�used when
compared with an inviscid plastic material. In the dynamical initial-boundary value problem the stress and
deformation due to wave re¯ections and interactions are not uniformly distributed, and this kind of het-
erogeneity can lead to strain localization in the absence of geometrical or material irregularities. This kind
of phenomenon has been recently noticed by Nemes and Eftis [23] (cf. also the results by Sluys et al. [45]).

1 Examples of some solutions of linear, one-dimensional wave propagation problems in an elstic±viscoplastic medium have been

recently proposed, cf. [45,44,53,52,36]).
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The theory of viscoplasticity gives the possibility to obtain mesh-insensitive results in localization
problems with respect to the width of the shear band and the wave re¯ection and interaction patterns
(cf. [45]).

Since the rate-independent plastic response is obtained as the limit case when the relaxation time Tm

tends to zero (cf. [31±33]) the theory of viscoplasticity o�ers the regularization procedure for the solution of
the dynamical initial-boundary value problems with localization of plastic deformation.

However the most important feature is that the propagation of deformation waves in an elastic±
viscoplastic medium has dispersive nature.

In this paper we shall use the numerical ®nite element procedure to show the solution of the particular
evolution problems with non-linear dissipative and dispersive wave e�ects.

The application of the variational method and the perturbation theory in the investigation of the non-
linear evolution problems will be presented by the authors in the forthcoming papers.

5. Numerical solution of the initial-boundary value problem (evolution problem)

5.1. Formulation of the evolution problem

Find u as function of t and x satisfying 2

�i� _u �A�t;u�u� f�t;u�;
�ii� u�0� � u0�x�;
�iii� The boundary conditions �e:g: as have been postulated in Section 3:1�:

�28�

A strict solution of (28) with f�t;u� � 0 (i.e. the homogeneous evolution problem) is de®ned as a function
u�t� 2 E (a Banach space) such that

u�t� 2 D�A� for all t 2 �0; tf �;

lim
Dt!0

u�t � Dt� ÿ u�t�
Dt





 ÿAu�t�






E

� 0 for all t 2 �0; tf �:
�29�

The boundary conditions are taken care of by restricting the domain D�A� to elements of E that satisfy
those conditions; they are assumed to be linear and homogeneous, so that the set S of all u that satisfy them
is a linear manifold; D�A� is assumed to be contained in S.

The choice of the Banach space E, as well as the domain of A, is an essential part of the formulation of
the evolution problem.

5.2. Well-posedness of the evolution problem

The homogeneous evolution problem (i.e. for f � 0) is called well-posed (in the sense of Hadamard) if it
has the following properties:

(i) The strict solutions are uniquely determined by their initial elements;
(ii) The set Y of all initial elements of strict solutions is dense in the Banach space E;
(iii) For any ®nite interval �0; t0�, t0 2 �0; tf � there is a constant K � K�t0� such that every strict solution
satis®es the inequality

ku�t�k6Kku0k for 06 t6 t0: �30�
The inhomogeneous evolution problem (28) will be called well posed if it has a unique solution for all
reasonable choices of u0 and f�t;u� and if the solution depends continuously, in some sense, on those
choices.

2 We shall follow here some fundamental results which have been discussed in [42,46,41,13,1,8].
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It is possible to show (cf. [41]) that strict solutions exist for sets of u0 and f��� that are dense in E and E1

(a new Banach space), respectively.

5.3. Discretisation in space and time

We must approximate (28) twice. First, when E is in®nite dimensional, we must replace A by an op-
erator Ah which operates in a ®nite dimensional space Vh � E, where, in general, h > 0 represents a dis-
cretization step in space, such that dim�Vh� ! 1 as h! 0. Second, we must discretize in time, that is to say
choose a sequence of moments tn (for example tn � nDt, where Dt is time step) at which we shall calculate
the approximate solution.

Let us introduce the following semi-discretized (discrete in space) problem.

Find uh 2 C0��0; t0�; Vh� �C0denotes the space of functions

continuous on ��0; t0�; Vh�� satisfying �31�
duh�t�

dt
�Ahuh�t� � fh�t�; uh�0� � u0;h:

The operator Ah for the ®nite element method can be obtained by a variational formulation approach. The
discrete equations are obtained by the Galerkin method at particular points in the domain.

Finally, we shall de®ne a method allowing us to calculate un
h 2 Vh, an approximation to uh�tn� starting

from unÿ1
h (we limit ourselves to a two-level scheme). Then we can write

un�1
h � Ch�Dt�un

h � Dtfn
h; u0

h � u0;h �32�
where we introduce the operator Ch�Dt� 2L�Vh� (L is the set of continuous linear mapping of Vh with
values in Vh) and where fn

h approximates fh�tn�.
We shall always assume that the evolution problem (28) is well posed and there exists a projection Rh of

E into Vh such that

lim
h!0
jRhuÿ ujE � 0 8u 2 E: �33�

5.4. Convergence, consistency and stability

The ®rst fundamental question is that of the convergence, when h and Dt tend to zero, of the sequence
fun

hg, the solution (32), towards the function u�t�, the solution of (32). Let us restrict our consideration, for
the moment, to the case where f�t� � 0.

De®nition 1. The scheme de®ned by (32) will be called convergent if the condition

u0;h ! u0 as h! 0 �34�
implies that

un
h ! u�t� as Dt! 0; n!1 with nDt! t �35�

for all t 2 �0; t0�, t0 2 �0; tf �, where un
h is de®ned by (32) and u�t� is the solution of (28). All this holds for

arbitrary u0.

The study of the convergence of an approximation scheme involves two fundamental properties of the
scheme, consistency and stability.

De®nition 2. The scheme de®ned by (32) is called stable, if there exists a constant K P 1 independent of h
and Dt such that

k�Ch�Dt��nRhkL�E�6K 8n;Dt satisfying nDt6 t0: �36�
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In De®nitions 1 and 2 there occur two parameters h and Dt. It may be that the scheme is not stable (or
convergent) unless Dt and h satisfy supplementary hypotheses of the type Dt=ha6 constant, a < 0, in which
case we call the scheme conditionally stable. If the scheme is stable for arbitrary h and Dt we say that it is
unconditionally stable.

De®nition 3. The scheme de®ned by (32) will be called consistent with Eq. (28) if there exists a subspace
Y � E dense in E, such that for every u�t� which is a solution of (28) with u0 � Y (and f � 0) we have

lim
h!0;Dt!0

Ch�Dt�Rhu�t� ÿ u�t�
Dt

���� ÿAu�t�
����
E

� 0: �37�

5.5. The Lax±Richtmayer equivalence theorem

We can now state the Lax±Richtmayer equivalence theorem (cf. [42,46,1,8]).

Theorem. Suppose that the evolution problem (28) is well-posed for t 2 �0; t0� and that it is approximated by the
scheme (32), which we assume consistent. Then the scheme is convergent if and only if it is stable.

The proof of the Lax±Richtmayer equivalence theorem for the case when the partial di�erential operator
A in (28) is independent of u can be found in [1].

Remark. Let us consider the evolution problem (28) with

f�t;u� 6� 0 �38�
and u0 � 0, and also the corresponding approximation (32). We have

un�1
h � Dt

Xn

j�1

Ch�Dt�� �nÿj
fj

h: �39�

If A is the infinitesimal generator of a semigroup fF�t�g we can write

u�t� �
Z t

0

F�t ÿ s�f�s� ds: �40�

Under suitable hypotheses on the convergence of fj
h to f�jDt� we can show that expression (39) converges to

(40) if the scheme is stable and consistent.
It is noteworthy that the spatial operator A de®ned by (12) has the same form as in thermo-elastody-

namics while all dissipative e�ects generated by viscoplastic ¯ow phenomena in¯uence the process through
the non-linear function f. This fact has a very important result on the investigation of the application of the
Lax±Richtmayer equivalence theorem to the evolution problem de®ned in Section 3.1. Based on the results
obtained by Hughes at al. [11] and [12] for elastodynamics we can ®rst prove that the evolution problem
considered is well posed. Second, by investigation of the conditions for function f (cf. (17) and (18)) we can
prove that expression (39) converges to (40) for our particular case when the function f has the form of
Eq. (12). Indeed, assuming j and U in the form (7) and (8) we can satisfy the conditions (17) and (18).

6. Numerical examples and results

In the numerical examples presented in this paper we study the behaviour of an axisymmetric specimen
under dynamic tension. In general, we discuss two types of boundary conditions and applied loadings. Case
A in Fig. 1 represents double-sided symmetrically applied velocities while case B re¯ects single-sided applied
velocities with the ®xed opposite edge. In the examples reported in the paper the velocities of displacements
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acting symmetrically on two opposite edges were changed from 0.5 to 20 m/s. The intensity of initial
conditions obtains the ®nal value after 0.01 s. For all the cases under consideration the process is ®nished
when the elongation of the specimen is 2.5 mm. There was also activated the fracture criterion for material
which was used in computations. We assumed that if the value of plastic equivalent strains (PEEQ) ap-
proached 100% the failure limit was reached. The specimen is of a length L � 19:05 mm and radius
r � 3:175 mm. Only half of the specimen is presented in Fig. 1 and the arrows with indicated velocities v
symbolically describe the equal displacements of all the points at the edges. In the computations the data
were accepted as follows: Young modulus E � 200:000 MPa, Poisson ratio m � 0:3, yield limit
rp � 1634 MPa for initial temperature which changes non-linearly (softens) down to 1006 MPa for the rise
of temperature up to 610�C, mass density q � 7850 kg/m3 and the relaxation time of mechanical pertur-
bances which changed from Tm � 0:025 s for initial temperature 20�C to 0.01 s for elevated temperature up
to 80�C. The problem was treated as an adiabatic case with speci®c heat 460 J/kg K and heat fraction 0.9.

6.1. Symmetric loading ± case A

First, let us take some computational experiments for symmetrically applied loadings at both ends. In
the following ®gures, Figs. 2±6, the changes of plastic equivalent strains, their development as well as the
changes of reactions and temperatures are reported. In Fig. 2 we present several stages of growth of PEEQ

Fig. 2. The development of plastic equivalent strains under double-side velocity 5 m/s (A5) for di�erent total elongation u of the

specimen.

Fig. 1. Two types of specimen loadings: double-side, symmetric (A) and single-side, non-symmetric (B).
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for di�erent total elongations. The reached values of PEEQ locally approximate 50% for total elongations
of order 10±12%. Fig. 3 presents the changes of PEEQ along the axis of symmetry of the specimen for
di�erent elongations. The level of di�usion of the zone of localization signi®cantly depends on the con-
stitutive parameter, namely the relaxation time Tm. For shorter Tm the width of the localized zone is smaller.
This kind of study was presented by [7,34].

The contour plots of PEEQs obtained for di�erent velocities of loading (0.5, 1.0, 5.0, 10.0 and 20.0 m/s)
are visualized in Fig. 4 for the same total elongation u � 1:75 mm. It is clearly visible that for di�erent
velocities the places of strain localization appear always symmetrically but with di�erent intensity and in

Fig. 4. The contours of plastic equivalent strain for the total elongation of the specimen u � 1:75 mm for di�erent double-side

velocities (A).

Fig. 3. Plastic equivalent strain along the specimen axis for di�erent total elongation.
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di�erent places (in the middle or for higher loading velocities close to the loaded edges). In Fig. 5 there are
the plots of reactions which act at the loaded sides as a function of displacements. The wave character of
this reaction is evident. Finally, in Fig. 6 one can observe the changes of temperature that take place during
the adiabatic process of deformations with the velocity loading v � 5:0 m/s for di�erent total elongation of
the specimen.

This important observation con®rms that the place of localization is chosen only as an e�ect of waves
interaction and signi®cantly depends on the initial conditions.

Fig. 5. Reaction force versus displacement for di�erent double-side velocieties.

Fig. 6. The development of temperature under double-side velocity 5 m/s (A5) for di�erent total elongation u of the specimen.
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6.2. Unsymmetric loading ± case B

Two choice of places of plastic strain localization for single-sided loading with the opposite side ®xed
are even more sensitive to the initial conditions than in previous symmetric cases. In Fig. 7 we present
the development of PEEQ in the specimen under the velocity v � 5:0 m/s. The process is controlled by the
velocity that acts at the top edge of the axisymmetrical specimen. Fig. 8 shows the changes of PEEQ for
the same velocity and di�erent elongations along the symmetry axis. One can observe that at the very
beginning of deformations for quite small elongations (of order 1%), there are two possible places where the
deformations could localize. However, later only one cross section, closer to the ®xed edge becomes the
localization zone while the other place of intense straining unloads.

In Fig. 9 we show the places of localization for di�erent velocities between v � 0:5 and v � 20:0 m/s. It is
easy to expect that for quasistatic cases (very slow processes) the localized zone would appear in the middle
of the specimen. For higher velocities (between 5.0 and 10.0 m/s) the localization appears in di�erent places
depending on the interaction of waves. For the loading velocities higher than a critical value the localization
appears close to the loaded edge. The same phenomena are also recognized in experiments.

Fig. 10 presents the wave character of showing the reaction as a function of elongations (here directly
displacements). The changes of the temperature ®eld in adiabatic process under the velocity loading with
the intensity of v � 5:0 m/s are presented in Fig. 11 as a function of total displacements. The temperature
rise is close to that which is observed in laboratory experiments.

At the end of Fig. 12 there are the vector plots of velocities of particles in the specimen for di�erent
stages of the process. The longitudinal waves propagate with the elastic speed. In Fig. 12 the crucial role of
re¯ection of waves and its interaction is visible. In the vicinity of the place of localization the speed of waves
is almost equal to zero. The vector plot (arrows) shows the directions of the particle movements and the
length of arrows re¯ects their values. In the areas where the localization appears the velocities and also the
accelerations are close to zero.

It has been observed (cf. Figs. 4 and 9 for initial velocities 10 and 20 m/s) that for the strain rate in the
range of 103 ÿÿ104 sÿ1 inertial e�ects are important because of the propagation of dispersive waves that
cause heterogeneity in the distribution of stress and deformation at the initial stages of the test. This
phenomenon has also been noticed by Nemes and Eftis [23] and it is in agreement with experimental ob-
servations performed by Regazzoni and Montheillet, and Rajendran and Bless [39,38].

Fig. 7. The development of plastic equivalent strains under single-side velocity 5 m/s (B5) for di�erent total elongation u of the

specimen.
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7. Final comments

The main important physical aspects of an elastic±viscoplastic medium proposed are as follows: (i) the
adiabatic thermal softening associated with high strain rate inelastic deformations; (ii) strain hardening±
softening e�ect; (iii) dispersive and dissipative wave motion; (iv) a length-scale parameter is implicitly in-
troduced into the dynamical initial-boundary value problem; (v) strain-rate sensitivity.

The numerical simulations of the evolution problems have shown that for dynamically imposed loading
the inhomogeneous ®elds of stress and deformation are caused by the propagation of waves and the

Fig. 9. The contours of plastic equivalent strain for the total elongation of the specimen u � 1:75 mm for di�erent single-side velocities

(B).

Fig. 8. Plastic equivalent strain along the specimen axis for di�erent total elongation.
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re¯ection of waves. This interaction of waves induced necking at di�erent locations along the specimen
depending upon the strain rate imposed. The phenomenon of localization of plastic deformation occurs
without imposition of any geometrical, thermal or material imperfections. In each of the numerical ex-
amples considered due to di�erent boundary conditions the evolution of the necking looks di�erent.
Propagative waves have dispersive and dissipative nature and this fact has fundamental in¯uence on the
development of localization of plastic deformation in a mode of necking.

Fig. 10. Reaction force versus displacement for di�erent single-side velocieties.

Fig. 11. The development of temperature under single-side velocity 5 m/s (B5) for di�erent total elongation u of the specimen.
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Fig. 12. The development of velocity vector under single-side velocity 1 m/s (B1) for di�erent total elongation u.
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The numerical simulations are able to provide graphic illustrations (cf. Figs. 2±12) which proved that the
interactions and re¯ections of dispersive, dissipative waves generate the time evolution of the spatial lo-
calization and the intensi®cation of stress and equivalent plastic deformation in the developing neck.

The temperature rise computed in the di�used neck con®rmed the assumption that the evolution process
has to be treated as adiabatic.
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