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ABSTRACT

The main objective of the paper is the investigation of adiabatic shear band localized fracture phenomenon
in inelastic solids during dynamic loading processes. This kind of fracture can occur as a result of an
adiabatic shear band localization generally attributed to a plastic instability implied by microdamage and
thermal softening during dynamic plastic flow processes.

By applying ideas of synergetics it can be shown that as a result of instability hierarchies a system is
self-organized into a new shear band pattern system. This leads to the conclusion that inelastic solid body
considered during the dynamics process becomes a two-phase material system. Particular attention is
focussed on attempt to construct a physically and experimentally justified localized fracture theory that
relates the kinetics of material failure on the microstructural level to continuum mechanics. The description
of the microstructural damage process is based on dynamic experiments with carefully controlled load
amplitudes and duration. The microdamage process has been treated as a sequence of nucleation, growth
and coalescence of microcracks. The microdamage kinetics interacts with thermal and load changes to make
failure of solids a highly rate, temperature and history-dependent, non-linear process.

The theory of thermoviscoplasticity is developed within the framework of the rate-type covariance
material structure with a finite set of internal state variables. The theory takes into consideration the effects
of microdamage mechanism and thermomechanical coupling. The dynamic failure criterion within localized
shear band region is proposed. The relaxation time is used as a regularization parameter. Rate dependency
(viscosity) allows the spatial differential operator in the governing equations to retain its ellipticity, and the
initial-value problem is well-posed. The viscoplastic regularization procedure assures the unconditionally
stable integration algorithm by using the finite element method. Particular attention is focused on the
well-posedness of the evolution problem (the initial—boundary value problem) as well as on its numerical
solutions. Convergence, consistency and stability of the discretized problem are discussed. The Lax
equivalence theorem is formulated and conditions under which this theorem is valid are examined.

Utilizing the finite element method and ABAQUS system for regularized elasto—viscoplastic model the
numerical investigation of the three-dimensional dynamic adiabatic deformation in a particular body at
nominal strain rates ranging over 103—104 s~1 is presented. A thin shear band region of finite width which
undergoes significant deformation and temperature rise has been determined. Its evolution until occurrence
of final fracture has been simulated. Numerical results are compared with available experimental observa-
tion data. ( 1997 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In technological dynamical processes fracture can occur as a result of an adiabatic shear band
localization generally attributed to a plastic instability generated by thermal softening during
plastic deformation.

Hartley et al.,1 Marchand and Duffy,2 Marchand et al.,3 and Cho et al.,4 made microscopic
observations of the shear band localization on the thin-walled steel tubes in a split Hopkinson
torsion bar. Three different steels were tested. Dynamic deformation in shear was imposed to
produce shear bands. It was found whenever the shear band led to fracture of the specimen, the
fracture occurred by a process of void nucleation, growth and coalescence. No cleavage was
observed on any fracture surface, including the most brittle of the steel tested.

This is presumably due to the thermal softening of the shear band material that results from the
local temperature rise occurring during the deformation process.

In recent years Zbib and Jurban5 have investigated numerically a three-dimensional problem
involving the development of shear bands in a steel bar pulled in tension and Batra and Zhang6

the three-dimensional dynamic thermomechanical deformations of a 4340 steel thin tube twisted
in a split Hopkinson bar at nominal strain rate of 1000, 2500 and 25 000 s~1.

The main objective of the present paper is the application of a recently developed viscoplastic-
damage type constitutive theory for high strain rate flow process and ductile fracture7,8 to the
problem of shear band localization and fracture of dynamically loaded thin-walled tubes experi-
encing strain rates ranging between 103—104 s~1.

It has been proved that the localization of plastic deformation phenomenon in an elas-
tic—viscoplastic solid body can arise only as the result of the reflection and interaction of waves. It
has different character then that which occurs in a rate independent elasto-plastic solid body.7,9
Rate dependency (viscosity) allows the spatial difference operator in the governing equations to
retain its ellipticity and the initial value problem is well-posed. Viscosity introduces implicity
a length-scale parameter into the dynamical initial—boundary value problem and hence it implies
that the localization region is diffused when compared with an inviscid plastic material. In the
dynamical initial—boundary value problem the stress and deformation due to wave reflections
and interactions are not uniformly distributed, and this kind of heterogeneity can lead to strain
localization in the absence of geometrical or material irregularities. This kind of phenomenon has
been recently noticed.10,11

The theory of viscoplasticity gives the possibility to obtain mesh-insensitive results in localiza-
tion problems with respect to the width of the shear band and the wave reflection and interaction
patterns.11

Since the rate independent plastic response is obtained as the limit case when the relaxation time
¹

m
tends to zero7,9 hence the theory of viscoplasticity offers the regularization procedure for the

solution of the dynamical initial—boundary value problems with localization of plastic deformation.
In Section 2 a constitutive model is developed within a thermodynamic framework of the rate

type material structure with internal state variables. Such important effects as the micro-damage
mechanism and thermomechanical coupling are taken into consideration. It has been assumed
that the intrinsic micro-damage mechanism consists of the nucleation, growth and coalescence
of microvoids. The rate dependent evolution equation for the porosity parameter has been
postulated.

In Section 3 the formulation of an adiabatic inelastic flow process is given. The Cauchy
problem is investigated and the conditions which guarantee its well-posedness are examined.
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Main features of rate dependent plastic model have been discussed. Particular attention has been
focussed on the viscoplastic regularization procedure for the solution of the dynamical
initial—boundary value problems with localization of plastic deformation. Some simplifications
are introduced and a particular elastic—viscoplastic constitutive model for damaged solids is
developed.

Numerical solutions of the initial—boundary value problem (evolution problem) are discussed
Section 4. Mathematical formulation of the evolution problem is presented. Discretisation in
space and time is proposed and convergence, consistency and stability are examined. The Lax
equivalence theorem is formulated and conditions under which this theorem is valid are investi-
gated.

Section 5 is devoted to the numerical investigation of the three-dimensional dynamic adiabatic
deformations of a steel thin tube twisted in a split Hopkinson bar at nominal strain rates ranging
103—104 s~1. A thin shear band region of finite width along the circumference of the tube which
undergoes significant deformations and temperature rise has been determined. Its evolution until
occurrence of fracture has been simulated. Numerical results are discussed and compared with
available experimental observation data.

2. CONSTITUTIVE STRUCTURE

2.1. Rate type constitutive structure for an elastic—viscoplastic damaged material

The main objective is to develop the rate type constitutive structure for an elastic—viscoplastic
material in which the effects of the micro-damage mechanism and thermomechanical coupling
are taken into consideration.

Let us introduce the axioms as follows:

(i) Axiom of the existence of the free energy function in the form

t"tL (e, F, 0 ; l) (1)

where e is the Eulerian strain tensor, F the deformation gradient, 0 a temperature field and
l denotes the internal state variable vector.

(ii) Axiom of objectivity (spatial covariance).12 The constitutive structure should be invariant
with respect to any diffeomorphism n: SPS, where S denotes the actual (spatial)
configuration of a body B.

(iii) The axiom of entropy production. For any regular process /
5
, 0

t
, l

5
of a body B the

constitutive functions are assumed to satisfy the reduced dissipation inequality

1

o
R%&

s : d!(g0R#tR )!
1

o0
q · grad 0*0 (2)

where o and o
R%&

denote the mass density in the actual and reference configuration,
respectively, s is the Kirchhoff stress tensor, d"d%#d1 the rate of total deformation,
g denotes the specific (per unit mass) entropy and q is the heat vector field.

Let us postulate l"(f, m ), where f denotes the new internal state vector which describes the
dissipation effects generated by viscoplastic flow phenomena and m is the volume fraction
porosity parameter and takes account for micro-damage mechanism.
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sFor precise definition of the finite elasto-plastic deformation see Perzyna9

Let us introduce the plastic potential function for damaged material in the form

f"J
2
#nmJ2

1
, where J

1
"qabg

ab
, J

2
"1

2
q@abq@cdg

ac
g
bd

(3)

n"n (0 ) is the temperature dependent material function and g denotes the metric tensor in S.
Let us postulate the evolution equations as follows.s (Lv defines the Lie derivative with respect

to the velocity field and the dot denotes the material derivative)

d1""P, Lvf""Z, mR "$ (4)

where for the elastic—viscoplastic model of a material we assume7,9,13,14

""

1

¹
.

S'( f!i )T (5)

¹
.

denotes the relaxation time for mechanical disturbances and i is the isotropic work-
hardening parameter, ' is the empirical overstress function and the bracket S·T defines the ramp

function, P"(1/2JJ
2
)(Lf/Ls ), the material function Z is intrinsically determined by the consti-

tutive assumptions postulated and the scalar valued evolution function $ has to be determined.
Thus, we have

P
ab
"

1

2JJ
2

q@cdg
ca

g
db
#Ag

ab
, A"

1

JJ
2

gmqabg
ab

(6)

The isotropic hardening-softening material function i is assumed in the form as follows:

i"i2
0
Mq#(1!q) exp[!h (0 )e1 ]N2 C1!A

m
mFB

1@2

D (7)

where q"i
1
/i

0
, i

0
and i

1
denote the yield and saturation stress of the matrix material (both can

be temperature dependent functions), respectively, h"h(0 ) is the temperature dependent strain
hardening function for the matrix material, e1":t

0
(2
3

d1 : d1)1@2 dt is the equivalent plastic defor-
mation, mF denotes the value of porosity at which the incipient fracture occurs; the overstress
viscoplastic function ' is postulated in the form13,14

'( f!i )"A
f

i
!1B

m
, where m"1, 3, 5, . . . (8)

The axioms (i)—(iii) and the evolution equations (4) lead to the rate equations as follows:

Lvs"L% : d!L 5)0R![(L%#gs#sg) : P]
1

¹
m
T' A

f

i
!1B

m

U
0R"!

1

oc
1

div q#
0

c
1
o
R%&

Ls
L0

: d#
s*

oc
1

s : d1#
s**

oc
1

mR (9)
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where

L%"o
R%&

L2tL

Le2
, L 5)"!o

R%&

L2tL

LeL0
, c

1
"!0

L2tL

L0 2
(10)

s* and s** are the irreversibility coefficients.
To make possible numerical investigation of the three-dimensional dynamic adiabatic

deformations of a body for different ranges of strain rate we introduce some simplifications of the
constitutive model.

(i) By analogy with the infinitesimal theory of elasticity we postulate linear elastic properties of
the material, i.e.

(L%)abcd"GM (gacgdb#gcbgda)#(KM !2
3

GM ) gabgcd#qbdgac (11)

where GM and KM denote the shear and bulk modulus of damaged material, respectively.15
(ii) It is assumed that

L%~1 :L5)"hg (12)

where h is the thermal expansion coefficient in elastic range.

Because of the presence of microvoids, the elastic shear and bulk moduli GM and KM , respectively,
are assumed to be degraded according to the model16

GM "G(1!m ) A1!
6K#12G

9K#8G
mB , KM "

4GK(1!m )

4G#3Km
(13)

where G and K are the elastic moduli of unvoided material.

2.2. Intrinsic micro-damage process

The intrinic micro-damage process consists of nucleation, growth and coalescence of micro-
voids (microcracks). Recent experimental observation results17 have shown that coalescence
mechanism can be treated as nucleation and growth process on a smaller scale. This conjecture
simplifies very much the description of the intrinsic micro-damage process by taking account only
of the nucleation and growth mechanisms. Then the porosity or the void volume fraction
parameter m can be determined by mR "(mR )

/6#-
#(mR )

'308
.

Physical considerations18,15 have shown that the nucleation of microvoids in dynamic loading
processes which are characterized by very short time duration is governed by the thermally activated
mechanism. Based on this heuristic suggestion we postulate for rate dependent plastic flow

(mR )
/6#-

"

1

¹
m

h*(m, 0 ) Cexp
m*(0 ) Dp!p

N
(m, 0, e1) D

k0
!1D (14)

where k denotes the Boltzmann constant, h*(m, 0 ) represents a void nucleation material function
which is introduced to take account of the effect of microvoid interaction, m*(0 ) is a temperature
dependent coefficient, p"(1/3)J

1
is the mean stress and p

N
(m, 0, e1 ) is the porosity, temperature

and equivalent plastic strain dependent threshold stress for microvoid nucleation.
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For the growth mechanism we postulate15,19~22

(mR )
'308

"

1

¹
m

g*(m, 0 )

Ji
[p!p

%2
(m, 0 , e1)] (15)

where ¹
m

Ji denotes the dynamic viscosity of a material, g*(m, 0 ) represents a void growth
material function and takes account for void interaction and p

%2
(m, 0, e1) is the porosity, temper-

ature and equivalent plastic strain-dependent void growth threshold mean stress.
Equations (14) and (15) determine the evolution function $ postulated in equation (4)

3
.

2.3. Fracture criterion

We base the fracture criterion on the evolution of the porosity internal state variable.
Let us assume that for m"mF catastrophe takes place,23 i.e.

i"iL (ep, 0, m ) Dm/mF"0 (16)

It means that for m"mF the material looses its stress carrying capacity. The condition (16)
describes the main feature observed experimentally that the load tends to zero at the fracture
point. It is noteworthy that the isotropic hardening—softening material function iL proposed in
particular form (7) satisfies the fracture criterion (16).

3. ADIABATIC INELASTIC FLOW PROCESS

3.1. Formulation of an adiabatic inelastic flow process

Let us define an adiabatic inelastic flow process as follows.7,9 Find /, v, o
M

, s, m and 0 as
function of t and x such that

(i) the field equations

/R "v,

vR"
1

o0
M

(1!m
0
) A

s
o
M

grad o
M
#div s!

s
1!m

grad mB
oR
M
"

o
M

1!m
$!o

M
div v,

sR"CL%!
1

c
p
o
R%&

0L5)
Ls
L0D : sym Dv#2 sym As :

Lv

LxB
!CA

s*

o
M

(1!m )c
p

L5)s#L%#gs#sgB : PD
1

¹
m
TA

f

i
!1B

m

U
!

s**L5)

o
M

(1!m )c
p

$

mR "$
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0R "
0

c
p
o
R%&

Ls
L0

: sym Dv#
s*

o
M

(1!m )c
p

s :P
1

¹
m
TA

f

i
!1B

m

U
#

s**

o
M

(1!m )c
p

$ ; (17)

(ii) the boundary conditions

(a) displacement / is prescribed on a part L
”

of L/(B) and tractions (s · n )a are prescribed on

part Ls of L/(B), where L
”
WLs"0 and L

”
XLs"L/(B );

(b) heat flux q · n"0 is prescribed on L/(B);

(iii) the initial conditions

/, v, p
M

, 0, m and s are given at each particle X3B at t"0;

are satisfied.

In the field equations (17) o
M

and o0
M

denote the actual and reference mass density of the matrix
material, respectively, m

0
is the initial porosity of a material and Dv denotes the spatial velocity

gradient.
Equation (17)

1
represents the kinematic relation. For damaged solid body the mass density

o can be approximated by o"o
M

(1!m ) and o
R%&

"o0
M

(1!m
0
). When the Kirchhoff stress

tensor s"(o/o
R%&

) r (r denotes the Cauchy stress tensor) is used as measure of stress then the
Cauchy equation of motion ovR"div r takes the form of equation (17)

2
. Equation (17)

3
expresses

the conservation of mass for damaged solid body, equation (17)
4

is obtained from (9)
1

by
substituting (9)

2
with q"0 for adiabatic process and using the relation d"sym Dv. Equation

(17)
5

defines the evolution equation for the porosity parameter m and equation (17)
6

is obtained
from (9)

2
for adiabatic process, i.e. for q"0.

3.2. ¹he Cauchy problem

Let us consider the Cauchy problem7,24,25

u5 "A(t, u )u#f(t, u ), t3[0, t
f
], u(0)"u0 (18)

where A is a spatial differential operator and f is a non-linear function, both defined by the
governing equations (17).

In order to examine the existence, uniqueness and well-posedness of the Cauchy problem (18)
let us assume that the spatial differential operator A has domain D(A) and range R (A), both
contained in a real Banach space E and the nonlinear function f is as follows f : EPE. To
investigate the existence as well as the stability of solutions to (18) it is necessary to characterize
their properties without actually constructing the solutions. This can be done by considering the
properties of a nonlinear semi-group because if the operator A#f( · ) generates a nonlinear
semi-group MF*

t
; t*0N, then a solution to (18) starting at t"0 from any element u03D (A) is

given by

u(t, x )"F*
t
u0(x ) for t3[0, t

f
] (19)

We say the problem (18) is well posed if F*
t

is continuous (in the topology on D (A) and R (A)
assumed) for each t3[0, t

f
].
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tWe shall follow here some fundamental results27~30

Let us postulate as follows:

(i) the strong ellipticity condition in the form:

E"L%!
1

c
p
o
R%&

0L5)
Ls
L0

(20)

is strongly elliptic (at a particular deformation /) if there is an e'0 such that

Eabcdf
a
f
c
m
b
m
d
*eEfE2 EnE2 (21)

for all vectors f and n3R3 ;

(ii) for positive numbers j1f and j2f and for ¹
m
'0

f (t, u )3E, Ef (t, u )E
E
)j1

f , Ef(t, u@ )!f(t, u )E
E
)j2f Eu@!uE

E
(22)

and

tP f (t, u )3E is continuous (23)

Using the results12,26 it is possible to show7,9 that the conditions (i) and (ii) guarantee the
existence of (locally defined) evolution operators F*

t
: EPE that are continuous in all variables.

In other words the solution of the Cauchy problem (18) in the form (19) exists, is unique and
well-posed.

4. NUMERICAL SOLUTION OF THE INITIAL—BOUNDARY VALUE
PROBLEM (EVOLUTION PROBLEM)

4.1. Formulation of the evolution problem

Find u as function of t and x satisfyingt

(i) u5 "A (t, u )u#f(t, u );
(ii) u (0)"u0(x);
(iii) The boundary conditions

(e.g. as have been postulated in Section 3.1) H (24)

A strict solution of (24) with f(t, u ),0 (i.e. the homogeneous evolution problem) is defined as
a function u (t)3E (a Banach space) such that

u (t)3D(A ), for all t3[0, t
f
], (25)

lim
*t?0 KK

u (t#*t)!u (t)

*t
!Au(t) KK

E

"0 for all t3[0, t
f
]

The boundary conditions are taken care of by restricting the domain D (A) to elements of E that
satisfy those conditions; they are assumed to be linear and homogeneous, so that the set S of all
u that satisfy them is a linear manifold; D(A ) is assumed to be contained in S.
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The choice of the Banach space E, as well as the domain of A, is an essential part of the
formulation of the evolution problem.

4.2. ¼ell-posedness of the evolution problem

The homogeneous evolution problem (i.e. for f,0) is called well-posed (in the sense of
Hadamard) if it has the following properties:27

(i) The strict solutions are uniquely determined by their initial elements;
(ii) The set ½ of all initial elements of strict solutions is dense in the Banach space E;
(iii) For any finite interval [0, t

0
], t

0
3[0, t

f
] there is a constant K"K(t

0
) such that every strict

solution satisfies the inequality

Eu(t)E)KEu0E, for 0)t)t
0

(26)

The inhomogeneous evolution problem (24) will be called well-posed if it has a unique solution
for all reasonable choices of u0 and f(t, u) and if the solution depends continuously, in some
sense, on those choices.

It is possible to show27 that strict solutions exists for sets of u0 and f ( · ) that are dense in E and
E
1

(a new Banach space), respectively.

4.3. Discretization in space and time

We must approximate (24) twice. First, when E is infinite dimensional, we must replace A by
an operator A

h
which operates in a finite dimensional space »

h
LE, where, in general, h'0

represents a discretisation step in space, such that dim(»
h
)PR as hP 0. Second, we must

discretise in time, that is to say choose a sequence of moments t
n
(for example t

n
"n*t, where *t is

time step) at which we shall calculate the approximate solution.
Let us introduce the following semi-discretized (discrete in space) problem.28

Find u
h
3C0([0, t

0
]; »

h
) (C0 denotes the space of functions

continuous on ([0, t
0
], »

h
)) satisfying

du
h
(t)

dt
"A

h
u
h
(t )#f

h
(t)

u
h
(0)"u

0,h

H (27)

The operator A
h

for the finite element method can be obtained by a variational formulation
approach. The discrete equations are obtained by the Galerkin method at particular points in the
domain.

Finally, we shall define a method allowing us to calculate un
h
3»

h
, an approximation to u

h
(t
n
)

starting from un~1
h

(we limit ourselves to a two-level scheme). Then we can write28

un`1
h

"C
h
(*t)un

h
#*tfn

h
, u0

h
"u

0,h
(28)

where we introduce the operator C
h
(*t )3L(»

h
) (L is the set of continuous linear mapping of

»
h
with values in »

h
) and where fn

h
approximates f

h
(t
n
).
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We shall always assume that the evolution problem (24) is well-posed and there exists
a projection R

h
of E into »

h
such that

lim
h?0

DR
h
u!u D

E
"0 ∀u3E (29)

4.4. Convergence, consistency and stability

The first fundamental question is that of the convergence, when h and *t tend to zero, of the
sequence Mun

h
N, the solution (28), towards the function u (t), the solution of (24). Let us restrict our

consideration, for the moment, to the case where f(t),0.
Definition 1. The scheme defined by (28) will be called convergent if the condition28

u
0,h

Pu0 as hP 0 (30)

implies that

un
h
Pu(t ) as *tP 0, nPR with n*tP t (31)

for all t3]0, t
0
[, t

0
3[0, t

f
], where un

h
is defined by (28) and u (t) is the solution of (24). All this

holds for arbitrary u0.
The study of the convergence of an approximation scheme involves two fundamental proper-

ties of the scheme, consistency and stability.28
Definition 2. The scheme defined by (28) will be called consistent with equation (24) if there

exists a subspace ½LE dense in E, such that for every u (t) which is a solution of (24) with
u0L½ (and f,0) we have28

lim
h?0,*t?0 K

C
h
(*t)R

h
u (t)!u (t)

*t
!Au(t) K

E

"0 (32)

In definitions 1 and 2 there occur two parameters h and *t. It may be that the scheme is not stable
(or not convergent) unless *t and h satisfy supplementary hypotheses of the type *t/ha)con-
stant, a(0, in which case we call the scheme conditionally stable. If the scheme is stable is stable
for arbitrary h and *t we say that it is unconditionally stable.

These schemes reflect so called explicit and implicit types of the integration procedure in
a particular numerical implementation.

Definition 3. The scheme defined by (28) is called stable, if there exists a constant K*1
independent of h and *t such that28,30

EC
h
(*t ))nR

h
EL (E))K ∀n, *t satisfying n*t)t

0
(33)

4.5. ¹he equivalence theorem

We can now state the Lax equivalence theorem.28,30,31
¹heorem. Suppose that the evolution problem (24) is well-posed for t3[0, t

0
] and that it is

approximated by the scheme (28). ¹hen the scheme is convergent if and only if the assertions of
consistency (32) and stability (33) are satisfied.
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The proof of the Lax equivalence theorem can be found in Dautray and Lions.4
Remark. Let us consider the evolution problem (24) with

f (t, u )O0 (34)

and u0"0, and also the corresponding approximation (28). We have

un`1
h

"*t
n
+
j/1

[C
h
(*t )]n~j f j

h
(35)

If A is the infinitesimal generator of a semigroup MF (t)N we can write

u(t)"P
t

0

F (t!s )f(s ) ds (36)

Under suitable hypotheses on the convergence of fj
h
to f( j*t) we can show that expression (35)

converges to (36) if the scheme is stable and consistent.

4.6. Application to an adiabatic inelastic flow process

The evolution problem (24) describes an adiabatic inelastic flow process formulated in Section
3.1 provided
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It is noteworthy that the spatial operator A has the same form as in elastodynamics of damaged
material while all dissipative effects generated by viscoplastic flow phenomena influence the
process through the nonlinear function f.

Let us consider first undamaged material (i.e. we assume $,0). For this case the spatial
operatorA has strictly the form as in elastodynamics. Then, for the proof of the well-posedness of
the homogeneous evolution problem (for f,0) we can use the results obtained in elasto-
dynamics. Next, we can extent the results to elasto—viscoplasticity by considering the non-
homogeneous evolution problem (when fO0) and by superposing suitable smoothness assertions
for the nonlinear function f.7,9,29

It is sufficient to assume for the non-linear function f the assertions as have been postulated by
(22) and (23). These conditions are satisfied provided we assume:

(i) The yield function f"f (J
1
, J

2
, m, 0 ) is smooth in the stress space and depends continuously

on m and 0. The particular form of the yield function (3) satisfies this assertion if the material
function n"n (0 ) is continuous.

(ii) The isotropic hardening material function i"iL (ep, m, 0 ) is a continuous function in all
variables. The particular form of iL assumed by (7) satisfies this condition for smooth
h"h(0 ).

(iii) The overstress viscoplastic function '"'( f!i ) is absolutely continuous. It means that it
can be postulated in the form (8).

(iv) The evolution function $ is absolutely continuous. This assertion is satisfied by the nuclea-
tion and growth terms (14) and (15) provided the material function h*, m*, p

N
, g* and p

%2
are

sufficiently smooth.

This analysis clearly shows how the constitutive modelling of the material is directly
related to the well-posedness of the evolution problem (i.e. the initial boundary value
problem).

5. SHEAR BAND LOCALIZATION FRACTURE

5.1. Formulation of the initial-boundary value problem for a thin steel tube

Cho, et al.4 tested the specimens machined in the shape of thin-walled tubes with integral
hexagonal flanges for gripping. Torsional loading at high strain rates was applied in a torsional
Kolsky bar (split-Hopkinson bar).

We idealize the initial-boundary value problem6 by assuming the specimen in the shape of
thin-walled tube.

The initial conditions are taken in the form

/ (x, 0)"0, v(x, 0)"0, o (x, 0)"o
R%&

"o0
M

(1!m
0
)

s(x, 0)"0, m(x, 0)"m
0
, 0(x, 0)"0

0
"constant in B (38)

That is, the body is initial at rest, is stress free at a uniform temperature 0
0

and the initial porosity
at every material point is m

0
.
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Figure 1. Details of the specimen with hexagonal mounting flanges used in the torsional Kolsky bar experiment32
(all dimensions are in millimeters)

For the boundary conditions, we assume

s · n"0 on the inner and outer surfaces of the tube

q · n"0 N grad 0 · n"0 on all bounding surfaces

v(x
1
, x

2
, 0, t)"0, v (x

1
, x

2
, L, t)"u*(t)(x2

1
#x2

2
)1@2n* (39)

where n is a unit outward normal to the respective surfaces, u*(t) is the angular speed of the
end surface x

3
"L of the tube, and n* is a unit vector tangent to the surface x

3
"L. It is

assumed that

u*(t)"G
u*

0
t/40,

u*
0

0)t)40 ks,

t'40 ks
(40)

The rise time of 40 ks is typical for torsional tests done in a split Hopkinson bar.6

5.2. Numerical computation and discussion of the results

The aforestated initial-boundary value problem of twisting the thin-walled steel tube has been
numerically treated by using the general purpose finite element code ABAQUS.

After a discussion and the estimation of computational efficiency32 the half of the specimen
(only the thin walled cylinder, cf. Figure 1) is modelled via multilayer, 4-noded shell elements. Five
integration Simpson’s points in the thickness direction are used at each of four Gauss points of
shell reduced integration element (S4R). The other models which were analysed (for example 3-D
models) drove to huge numerical problems that exceeded 60, 000 degrees of freedom. This
dimension of the dynamically formulated problem does not guarantee the possibility to obtain
the results in reasonable time even using very powerful computers. In circumferential direction
the model consists of 24 segments with 10 elements on the depth of the half of a specimen,
cf. Figure 2.
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Figure 2. Layer shell divided into 24 segments with 10 elements on the depth
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Figure 3. Evolution of the deformation of the mesh for the segment

To avoid the reflection of waves and to model the influence of the rest of the specimen
(cf. Figure 1) it has been postulated that the additional spring and mass elements are taken into
consideration.

The rigidity of the spring and the value of the additional mass have been established in such
a way to reflect the behaviour of the remaining part of the specimen.

Basically, after several tests we decided to use explicit method of integration of the
nonlinear dynamic equations which, however conditionally stable and requires large number of
time increments, in the case under consideration is more efficient then implicit one. To be sure
that the numerical scheme is convergent the conditions (32) and (33) have been estimated
numerically.
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Figure 4. Evolution of the plastic equivalent strain in different laminates
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Figure 4. (Continued )

The following values for various material parameters are assumed (AISI 1018 cold roled steel)

o
M
"7860 kg/m3 c

p
"460 J/(kg °C), G"80 GPa,

K"210 GPa, i
0
"237 MPa i

1
"1·2 i

0
,

0
0
"20°C, m

0
"0·001, mF"0·25,

h"const"5·15, n"const"1·25, s*"0·90,

m"5 (for 0"0), ¹
m
"2·5 · 10~2 s (for 0"0),

m"4·7 (for 0"80°C), ¹
m
"1·0 · 10~2 s (for 0"80°C).

The tube has been twisted at nominal shear strain rate ranging 103—104 s~1.
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Figure 5. Plastic equivalent strain as a function of time and placement on the tube

For the particular example considered it has been assumed mR "0 (no influence of the
micro-damage mechanism) and u*

0
"253 s~1. The evolution of the deformation of the mesh for

the segment is shown in Figure 3. In Figure 4 one can observe the evolution of the equivalent
plastic deformation in different laminates and clear plastic strain localization effect around the
mid cross section. The predicted width of this localized region is 0·2—0·3 mm, cf. Figure 5. The
evolution of temperature in different laminates is presented in Figure 6 and for the segment
in Figure 7. The maximum strain is of the order of 200 per cent and the temperature rise is of the
order of 150°C.

The main result of this numerical simulation is the determination of a thin shear band
region of finite width along the circumference of the tube which undergoes significant
deformations and temperature rise. The predicted width of the determined shear band, the
changes of temperature and deformation are in sufficiently good agreement with the experimental
observations.1~4

It has been also found that the width of the shear band region and the temperature rise vary
with the nominal strain rate as well as with the relaxation time assumed.

The evolution of the localized shear band region until occurrence of fracture has been
simulated by Lodygowski and Perzyna.33 In their study the influence of the micro-damage
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Figure 6. Evolution of the temperature rise in different laminates

mechanism has been taken into consideration. Particular forms of the material functions h*, g*,
m*, p

N
and p

%2
which affect the micro-damage mechanism and have the influence on the final

fracture of the tube have been postulated and discussed during the computation process. An
exhaustive discussion of the results obtained and the comparison with the experimental observa-
tion data are also presented.

6. CONCLUSIONS

In the paper the problem of theoretical description and numerical simulation of the appearing
and the development of plastic strain localization is discussed. The theory of thermo—viscoplastic-
ity is used for the mathematical modelling and rate-dependent overstress viscoplasticity
serves also as a mathematical method of regularization. The relaxation time of mechanical
perturbations plays the role of regularization parameter which is important when dealing with
materials exhibiting thermal softening. The viscosity allows the spatial differential operator in the
governing equations to retain its ellipticity.
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Figure 7. Evolution of temperature for the segment
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Figure 7. (Continued )

The attention was focussed on the well-posedness of the evolution problem and also on the
convergence, consistency and stability of the discretized incremental problem.

The numerical examples are restricted to the numerical simulation of the twisting of a thin-
walled tube in a split Hopkinson bar. The results of this adiabatic process were compared with the
experiments of Duffy et al.1~4 and showed a good qualitative and quantitative agreement.
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